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Asymmetry of Hawking Radiation of Dirac Particles
in a Charged Vaidya—de Sitter Black Hole

S. Q. Wu' and X. Cait
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The Hawking radiation of Dirac particles in a charged Vaidya—de Sitter black hole
is investigated by using the method of generalized tortoise coordinate transformation.
It is shown that the Hawking radiation of Dirac particles does not existPiorQ;
components, but foP,, Q1 components it does. Both the location and the temperature
of the event horizon change with time. The thermal radiation spectrum of Dirac patrticles
is the same as that of Klein-Gordon particles.

1. INTRODUCTION

Hawking’s investigation of quantum effects (Hawking, 1974, 1975) inter-
preted as the emission of a thermal spectrum of particles by a black hole event
horizon sets a significant landmark in black hole physics. In the last few decades,
much work has been done on the Hawking effect of black holes in different types
of space—time, such as Vaidya (Kiet al., 1989), Kerr—Newman (Wu and Cai,
2000a,b), and NUT-Kerr—Newman—de Sitter (Ahmed, 1991; Ahmed and Mondal,
1995) space-times. The thermal radiation of Dirac particles, especially with the
aid of Newman—Penrose formalism (Newman and Penrose, 1962), has been also
investigated in some spherically symmetric and nonstatic black holes &lzp
1994; Li and Zhao, 1993; Ma and Yang, 1993; Zéwal, 1994; Zhanget al.,
1999). However, most of these studies concentrated on the spirmpstatk/2 of
the four-component Dirac spinors. Recently, the Hawking radiation of Dirac par-
ticles of spin statgp = —1/2 attracts a little more attention (let al., 1999; Li,

1998; Li and Zhao, 1998).

In this paper, we investigate the Hawking effects of Dirac particles in the
Vaidya-type black hole by means of the generalized tortoise transformation method.
We consider simultaneously the limiting forms of the first order form and the second
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order form of Dirac equation near the event horizon because the Dirac spinors
should satisfy both of them. From the former, we can obtain the event horizon
equation, while from the latter, we can derive the Hawking temperature and the
thermal radiation spectrum of electrons. Our results are in accord with others. With
our new method, we can prove rigorously that the Hawking radiation does not ex-
ist for P, Q, components of Dirac spinors. The origin of this asymmetry of the
Hawking radiation of different spinorial components probably stem from the asym-
metry of space—time in the advanced Eddington—Finkelstein coordinate system. As
a byproduct, we point out that there could not have been any new quantum thermal
effect (Li et al, 1999; Li, 1998; Li and Zhao, 1998) in the Hawking radiation

of Dirac particles in any spherically symmetric black hole whether it is static or
nonstatic.

The paper is organized as follows: In section 2, we work out the spinor form
of Dirac equation in the Vaidya-type black hole, then, we obtain the event horizon
equationin section 3. The Hawking temperature and the thermal radiation spectrum
are derivedinsection4 and 5, respectively. Section 6 is devoted to some discussions.

2. DIRAC EQUATION

The metric of a charged Vaidya—de Sitter black hole with the cosmological
constantA is given in the advanced Eddington—Finkelstein coordinate system by

ds® = 2dv(G dv— dr) — r2(d6? + sir? 6 dg?), 1)
and the electromagnetic one-form is
A= rg dv 2)
where G =1- 24 4 ?—: — £r4, in which both mas#(v) and electric charge
Q(v) of the hole are functions of the advanced time

We choose such a complex null-tetfadh, m, m} that satisfies the orthogonal

conditionsl - n = —m-m = 1. Thus the covariant one-forms can be written as
—r
| =dyv, m= ——(do +i sind dg),
ﬁ( )
—r
n=Gdv—dr, m= —(d6 — i sind dg). 3
Jé( ®) 3)
and their corresponding directional derivatives are
0 1 d I d
D = -7 8 = —F PN S y
or J2r (89 + sind 8go>
d 0 0

= 1 a i
A=—+G—, S=——>—==—). 4
v + aor J2r <89 siné 8(p> @
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It is not difficult to determine the 12 Newman—Penrose complex coefficients
(Newman and Penrose, 1962) in the above null-tetrad:

~ 1
K=l==0=e=1=v=0, p=F,
G G, coto
= —, :——’, = —0 = . 5
n= 14 5 B N (5)

Inserting for the following relations among the Newman—Penrose spin-
coefficient$

1 . coto
€E—p=—-, T—0=—",
P="r 2
G G, coto
— e _’, - T =—", 6
oy =g > B N (6)

and the electromagnetic potential
A-1=0, A-n=Q/r, A-m=-A-m=0, @)

into the spinor form of the coupled Chandrasekhar—Dirac equation (Chandrasekhar,
1983), which describes the dynamic behavior of spin-1/2 particles, namely

. - . . _ i
(D+e—p+igA N)Fi+@+7 —a+iqgA - MF, = 26y,
V2
. . i
(Atp—y+igA-N)Fo+ @+ — 7 +igA mF = --2G,,
NZ)
(D+e —p* +iGA- )Gy — (5 + 7" —a” +iqA-m) Gy = "20F,,
V2
. = _ i
(A+u" =" +igA-N)Gy— (3 + " — " +igA-M) Gy = ~OF;, (8)
V2
whereu andq is the mass and charge of Dirac particles, one obtains
d 1 I[,Lo 1 I[,Lo
+o )Pt = LF=—"2G1,  S5DF 4L iF —Gy,
<3f ) fr N V.V A
a 1 I/Lo 1 1 IMO
Gy— —LIGi="ZF, DGy - —LGy=——~F,
(3r+>2ﬁr N TN e M
9)

3Here and hereafter, we dendde, = dGy/dr, etc.
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in which we have defined operators

d 9
D=2%(_— — 2 2i
r (8\/ +G 8r>+ (r*G),r +2iqQr,
3 1 i 9 3 1 i 9
L=—+-cot) - ——, L= — + Zcoth + — —.
06 + 2 sing d¢ a6 + 2 + sing dg
One can observe that the Chandrasekhar—Dirac equation (8) could be satisfied
by identifying Q1, Q2, g Q with Py, —P;*, —q Q, respectively. By substituting

1 1
Fi= N Py, Fo = Py, G1 = Qq, G, = ﬁQz,
into Eq. (9), they have the form
0 . .
_8_rpl+£P2:|,U«0rQll DP,+ LTP; = i juor Qo
0 . .
—ng — L1Q1 =ipor Py, DQ1— LQ2 =iporPy. (10)

3. EVENT HORIZON
Now separating variables to Eq. (10) as
PL= Ru(v,1)S(9, ¢), P> = Ro(v, 1)&(0, ¢),
Q1= Rx(v,1)S(0, ¢), Q2 = Ru(v, 1)S(0, ¢),
then we have the radial part

a _ .
8—rR1=()~—|lL0|’)R2, DRy = (A +ipor)Ry, (11)
and the angular part

LIS =-1S, LS = 1S, (12)

wherei = ¢ + 1/2 is a separation constant. Both functidh§, ¢) and $(0, ¢)
are, respectively, spinorial spherical harmonj€g, (0, ¢) with spin-weights =
+1/2, satisfying the following equation by Goldbegzgal. (1968)

[ a2 3 1 9  2scosd 3

o 4COth— s
962 30 sirf e d¢? Sif9 ¢

—s? colh+s+ (L —s)(l+s+ 1)} Yem(6, ) = 0. (13)

As to the thermal radiation, we should be concerned about the behavior of the
radial part of Eq. (11) near the horizon only. Because the Vaidya-type space—times
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are spherically symmetric, we introduce as a working ansatz the generalized tor-
toise coordinate transformation (Zhao and Dai, 1991)

,=r+ % In[r — ry(v)], Vi =V — Vo, (14)

wherery is the location of the event horizonr,is an adjustable parameter and is
unchanged under tortoise transformation. The paramgiean arbitary constant.
From (14) we can deduce some useful relations for the derivatives as follows:

P d 3D iy 0
ar 2(r —ry) | or,’ v v,  2(r —rp) ory’

Now let us consider the asymptotic behavioRaf R, near the event horizon.
Under the transformation (14), Eq. (11) can be reduced to the following limiting
form near the event horizon

B 5 B
—R1 =0, 24[G(rH) —ruv]l-— R =0, (15)
or ory
after being taken limits — ry(vp) andv — vp.

From Eqg. (15), we know tha®;(r.) = const is regular on the event horizon.

Thus the existence condition of a nontrial solution we can havé&jas (as for

v # 0)
2G(rw) — 2rpy = 0. (16)

which determines the location of horizon. The event horizon equation (16) can be
inferred from the null hypersurface conditicgi! 9; Fo;F =0, andF(v,r) =0,
namelyr = r(v). It follows thatry depends on time. So the location of the event
horizon and the shape of the black hole change with time.

4. HAWKING TEMPERATURE

In the preceding section, we have deduced the event horizon equation from
the limiting form of the separated radial part of the first order Dirac equation.
Using a similar procedure to its second order equation, we can derive the Hawking
temperature and the thermal radiation spectrum. A direct calculation gives the
second order radial equation

92 92
2r? (G — 4+ —) Ry + |:(rzG),r +2iqQr + 2r2G

iuok—uér 0
arz  agvor

A2+ p2r2 ar

— (32 + pdr®)R =0, (7)
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) 82 82 2 3
2%(G o5+ 5 o ) R+ [307G); +2|qu]—Rz+4r SR

ipor +pdr [, @ 5 9 ) ,
———|2°GC —+ 22— +(r°G), +29Qr | R,
32+ pidr2 ar T2 gy TG T 2AQr | R

+[(r?G)r +219Q — (32 + ugr?)|Re = 0. (18)

Given the transformation (14), Egs. (17) and (18) have the following limiting
forms near the event horizan=ry

2

Ry + 2
ar2 Lt S v

29Q+2G(H) | , >
—— + 2r506(r
My T 2HG( H)rﬁ(kz + uir
2

ar, 0V

A
[Z + 4G(r|-|) — 2rH,v:| Ry

1

i ok — pu2r 9
+[—A+G,r(rH)+ “07“0“)]

ar,

[ - +2G(rH)} P Rt 2 R =0, (19)

A 32 2
[5 +4G(r|-|) — 2rH'Vj| R, +2

R
ar2 ar, ov, -

2igQ + 6G(ry) —4ryy
MH

+{—A+ 3G, (ru) +

ok + pgr
ra(2 + ugrd)

26(rw) — 2rH,v]}af R

*

A 32 2
= 2G(r S Re+2
[ZK +26( H)} 2+ ary IV,

2i0Q + 2G(rw)
MH

R>

ad
+[-A+36, (0 + ] sre=0 (20
where we have used relation&@y) = 2ryy and ;- a =0.

With the aid of the event horizon equation (16) name@(r&) =2ryy, We
know that the coefficienAis an infinite limit of 0/0 type. By use of the L’ ld&pital
rule, we get the following result

2G—r
A= fim 2G =) _ 2G,r (). (21)

r->ru(vo) I —TIy
Now let us select the adjustable parametén Eqgs. (19) and (20) such that

G1r (rH)
K

A
g + 2G(rH) = + 2rH,v =1, (22)
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which means the temperature of the horizon is

Gy () Gyr(rn)
“TI0Gn)  1-2ray (23)

Such a parameter adjustment can make Egs. (19) and (20) reduce to

82 2
—Ri+2 R, =0, 24
ar2 Lt arov, (24)
and
92 2 2igQ +2G(ry) ] o
—R+2 R, G, (r — " |—R
ar2 2+ AV, 2+[ () + ry }ar* 2
92 2 B]
=—R+2 R +2(C+i —R,=0. 25
arz et o et CHiv) 7R (25)
wherewg, C will be regarded as finite real constants,
2r
wo=99 e G, (m)+ ZRY
'y 'y

Equations (24) and (25) are standard wave equations near the horizon.

5. THERMAL RADIATION SPECTRUM

Combining Eq. (24) Withaf—*_Rl = 0, we know thatR; is a constant near the
horizon. The solutiolR; = Rjpe™' Y+ means that Hawking radiation does not exist
for Ry.

Now separating variables to Eq. (25) as

Ry = Ro(r.)e "

and substituting this into Eqg. (25), one gets

R, = 2[i (w — wp) — C]IR;, (26)
The solution is
Ry = Rpy€?ll@@0)=CIe 4 Ry, (27)
The ingoing wave and the outgoing wave to Eq. (25) are
Rizn — efiwv*,
ROV = g ! Ve@ll(me0)=Cl (> ), (28)

Near the event horizon, we have

1
re ~—In(r —rp).
5o I — 1)
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Clearly, the outgoing wavBS"(r > r ) is not analytic at the event horizon= r,
but can be analytically extended from the outside of the hole into the inside of the
hole through the lower complexplane

(r—rw)—> (n—r)e’”
to
ﬁgut — e—iwv*eZ[i (w—wo)—C]r*einC/Ken(w—a)o)/K’ (r < rH)- (29)

So the relative scattering probability of the outgoing wave at the horizon is
easily obtained

out |2
R2

pout
R2

— g 2t @—wo)/i_ (30)

According to the method suggested by Damour and Ruffini (1976) and de-
veloped by Sannan (1988), the thermal radiation Fermionic spectrum of Dirac
particles from the event horizon of the hole is given by

1
(Nw) = ma (31)
with the Hawking temperature being
K
TH = Za
whose obvious expression is
1 Mry — Q% — Ar?/3

Ty = : .
"7 4mry Mry— Q22— Ard/6

It follows that the temperature depends on the time, because it is determined by the
surface gravity, a function ofv. The temperature is consistent with that derived
from the investigation of the thermal radition of Klein—Gordon particles (Li, 1998;

Li etal, 1999; Li and Zhao, 1998).

6. CONCLUSIONS

Equations (16) and (23) give the location and the temperature of event horizon,
which depend on the advanced tim&@ hey are just the same as that obtained in the
discussion on thermal radition of Klein—Gordon particles in the same space-time.
Equation (31) shows the thermal radiation spectrum of Dirac particles in a charged
Vaidya black hole with a cosmological constant

In conclusion, we have studied the Hawking radiation of Dirac particles in
a black hole whose mass and electric charge change with time. Our results are
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consistent with others. In this paper, we have dealt with the asymptotic behavior
of the separated Dirac equation near the event horizon—not only its first order
form but also its second order form. We find that the limiting form of its first
order form puts very strong restrictions on the Hawking radiation, that is, not all
components of Dirac spinors bBt, Q4 display the property of thermal radiation.
The asymmetry of Hawking radiation with respect to the four-component Dirac
spinors probably originate from the asymmetry of space—times in the advanced
Eddington—Finkelstein coordinate. This point has not been revealed previously.

In addition, our analysis demonstrates that except the Coulomb engrgy
there was no new quantum effect in a Vaidya-type space—time as declared by Li
(Li, 1998; Li et al,, 1999; Li and Zhao, 1998). This conclusion holds true in any
spherically symmetric black hole whether it is static or nonstatic.
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