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Asymmetry of Hawking Radiation of Dirac Particles
in a Charged Vaidya–de Sitter Black Hole
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The Hawking radiation of Dirac particles in a charged Vaidya–de Sitter black hole
is investigated by using the method of generalized tortoise coordinate transformation.
It is shown that the Hawking radiation of Dirac particles does not exist forP1, Q2
components, but forP2, Q1 components it does. Both the location and the temperature
of the event horizon change with time. The thermal radiation spectrum of Dirac particles
is the same as that of Klein-Gordon particles.

1. INTRODUCTION

Hawking’s investigation of quantum effects (Hawking, 1974, 1975) inter-
preted as the emission of a thermal spectrum of particles by a black hole event
horizon sets a significant landmark in black hole physics. In the last few decades,
much work has been done on the Hawking effect of black holes in different types
of space–time, such as Vaidya (Kimet al., 1989), Kerr–Newman (Wu and Cai,
2000a,b), and NUT–Kerr–Newman–de Sitter (Ahmed, 1991; Ahmed and Mondal,
1995) space–times. The thermal radiation of Dirac particles, especially with the
aid of Newman–Penrose formalism (Newman and Penrose, 1962), has been also
investigated in some spherically symmetric and nonstatic black holes (Zhaoet al.,
1994; Li and Zhao, 1993; Ma and Yang, 1993; Zhuet al., 1994; Zhanget al.,
1999). However, most of these studies concentrated on the spin statep = 1/2 of
the four-component Dirac spinors. Recently, the Hawking radiation of Dirac par-
ticles of spin statep = −1/2 attracts a little more attention (Liet al., 1999; Li,
1998; Li and Zhao, 1998).

In this paper, we investigate the Hawking effects of Dirac particles in the
Vaidya-type black hole by means of the generalized tortoise transformation method.
We consider simultaneously the limiting forms of the first order form and the second

1 Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079, People’s Republic of
China.

2 To whom correspondence should be addressed at e-mail: sqwu@iopp.ccnu.edu.cn

1349
0020-7748/01/0700-1349$19.50/0C© 2001 Plenum Publishing Corporation



P1: VENDOR/GCZ P2: GCQ/GDP/FJQ Tally: GCO/FOM/FJQ QC: FTK

International Journal of Theoretical Physics [ijtp] PP131-301585 May 18, 2001 15:47 Style file version Nov. 19th, 1999

1350 Wu and Cai

order form of Dirac equation near the event horizon because the Dirac spinors
should satisfy both of them. From the former, we can obtain the event horizon
equation, while from the latter, we can derive the Hawking temperature and the
thermal radiation spectrum of electrons. Our results are in accord with others. With
our new method, we can prove rigorously that the Hawking radiation does not ex-
ist for P1, Q2 components of Dirac spinors. The origin of this asymmetry of the
Hawking radiation of different spinorial components probably stem from the asym-
metry of space–time in the advanced Eddington–Finkelstein coordinate system. As
a byproduct, we point out that there could not have been any new quantum thermal
effect (Li et al., 1999; Li, 1998; Li and Zhao, 1998) in the Hawking radiation
of Dirac particles in any spherically symmetric black hole whether it is static or
nonstatic.

The paper is organized as follows: In section 2, we work out the spinor form
of Dirac equation in the Vaidya-type black hole, then, we obtain the event horizon
equation in section 3. The Hawking temperature and the thermal radiation spectrum
are derived in section 4 and 5, respectively. Section 6 is devoted to some discussions.

2. DIRAC EQUATION

The metric of a charged Vaidya–de Sitter black hole with the cosmological
constant3 is given in the advanced Eddington–Finkelstein coordinate system by

ds2 = 2 dv(G dv− dr )− r 2(dθ2+ sin2 θ dϕ2), (1)

and the electromagnetic one-form is

A = Q

r
dv (2)

where 2G = 1− 2M
r + Q2

r 2 − 3
3 r 4, in which both massM(v) and electric charge

Q(v) of the hole are functions of the advanced timev.
We choose such a complex null-tetrad{l , n, m, m} that satisfies the orthogonal

conditionsl · n = −m ·m= 1. Thus the covariant one-forms can be written as

l = dv, m= −r√
2

(dθ + i sinθ dϕ),

n = G dv− dr, m= −r√
2

(dθ − i sinθ dϕ). (3)

and their corresponding directional derivatives are

D = − ∂
∂r

, δ = 1√
2r

(
∂

∂θ
+ i

sinθ

∂

∂ϕ

)
,

1 = ∂

∂v
+ G

∂

∂r
, δ̄ = 1√

2r

(
∂

∂θ
− i

sinθ

∂

∂ϕ

)
. (4)
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It is not difficult to determine the 12 Newman–Penrose complex coefficients
(Newman and Penrose, 1962) in the above null-tetrad:

κ̃ = λ̃ = π̃ = σ = ε = τ = ν̃ = 0, ρ = 1

r
,

µ = G

r
, γ = −G,r

2
, β = −α = cotθ

2
√

2r
. (5)

Inserting for the following relations among the Newman–Penrose spin-
coefficients3

ε − ρ = −1

r
, π̃ − α = cotθ

2
√

2r
,

µ− γ = G

r
+ G,r

2
, β − τ = cotθ

2
√

2r
, (6)

and the electromagnetic potential

A · l = 0, A · n = Q/r, A ·m= −A ·m= 0, (7)

into the spinor form of the coupled Chandrasekhar–Dirac equation (Chandrasekhar,
1983), which describes the dynamic behavior of spin-1/2 particles, namely

(D + ε − ρ + iq A · l ) F1+ (δ̄ + π̃ − α + iq A ·m)F2 = iµ0√
2

G1,

(1+ µ− γ + iq A · n) F2+ (δ + β − τ + iq A ·m)F1 = iµ0√
2

G2,

(D + ε∗ − ρ∗ + iq A · l ) G2− (δ + π̃∗ − α∗ + iq A ·m) G1 = iµ0√
2

F2,

(1+ µ∗ − γ ∗ + iq A · n) G1− (δ̄ + β∗ − τ ∗ + iq A ·m) G2 = iµ0√
2

F1, (8)

whereµ0 andq is the mass and charge of Dirac particles, one obtains

−
(
∂

∂r
+ 1

r

)
F1+ 1√

2r
LF2 = iµ0√

2
G1,

1

2r 2
DF2+ 1√

2r
L†F1 = iµ0√

2
G2,

−
(
∂

∂r
+ 1

r

)
G2− 1√

2r
L†G1 = iµ0√

2
F2,

1

2r 2
DG1− 1√

2r
LG2 = iµ0√

2
F1,

(9)

3 Here and hereafter, we denoteG,r = dG/dr, etc.
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in which we have defined operators

D = 2r 2

(
∂

∂v
+ G

∂

∂r

)
+ (r 2G),r + 2iq Qr,

L = ∂

∂θ
+ 1

2
cotθ − i

sinθ

∂

∂ϕ
, L† = ∂

∂θ
+ 1

2
cotθ + i

sinθ

∂

∂ϕ
.

One can observe that the Chandrasekhar–Dirac equation (8) could be satisfied
by identifying Q1, Q2, q Q with P∗2 ,−P∗1 ,−q Q, respectively. By substituting

F1 = 1√
2r

P1, F2 = P2, G1 = Q1, G2 = 1√
2r

Q2,

into Eq. (9), they have the form

− ∂
∂r

P1+ LP2 = iµ0r Q1, DP2+ L†P1 = iµ0r Q2,

− ∂
∂r

Q2− L†Q1 = iµ0r P2, DQ1− LQ2 = iµ0r P1. (10)

3. EVENT HORIZON

Now separating variables to Eq. (10) as

P1 = R1(v, r )S1(θ , ϕ), P2 = R2(v, r )S2(θ , ϕ),

Q1 = R2(v, r )S1(θ , ϕ), Q2 = R1(v, r )S2(θ , ϕ),

then we have the radial part

∂

∂r
R1 = (λ− iµ0r )R2, DR2 = (λ+ iµ0r )R1, (11)

and the angular part

L†S1 = −λS2, LS2 = λS1, (12)

whereλ = `+ 1/2 is a separation constant. Both functionsS1(θ , ϕ) andS2(θ , ϕ)
are, respectively, spinorial spherical harmonicssỲ m(θ , ϕ) with spin-weights=
±1/2, satisfying the following equation by Goldberget al. (1968)[

∂2

∂θ2
+ cotθ

∂

∂θ
+ 1

sin2 θ

∂

∂ϕ2
+ 2is cosθ

sin2 θ

∂

∂ϕ

− s2 cot2 θ + s+ (`− s)(`+ s+ 1)

]
SỲ m(θ , ϕ) = 0. (13)

As to the thermal radiation, we should be concerned about the behavior of the
radial part of Eq. (11) near the horizon only. Because the Vaidya-type space–times
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are spherically symmetric, we introduce as a working ansatz the generalized tor-
toise coordinate transformation (Zhao and Dai, 1991)

r∗ = r + 1

2κ
ln[r − rH(v)], v∗ = v − v0, (14)

whererH is the location of the event horizon,κ is an adjustable parameter and is
unchanged under tortoise transformation. The parameterv0 is an arbitary constant.
From (14) we can deduce some useful relations for the derivatives as follows:

∂

∂r
=
[
1+ 1

2κ(r − rH)

]
∂

∂r∗
,

∂

∂v
= ∂

∂v∗
− rH,v

2κ(r − rH)

∂

∂r∗
.

Now let us consider the asymptotic behavior ofR1, R2 near the event horizon.
Under the transformation (14), Eq. (11) can be reduced to the following limiting
form near the event horizon

∂

∂r∗
R1 = 0, 2r 2

H[G(rH)− rH,v]
∂

∂r∗
R2 = 0, (15)

after being taken limitsr → rH(v0) andv→ v0.
From Eq. (15), we know thatR1(r∗) = const is regular on the event horizon.

Thus the existence condition of a nontrial solution we can have forR2 is (as for
rH 6= 0)

2G(rH)− 2rH,v = 0. (16)

which determines the location of horizon. The event horizon equation (16) can be
inferred from the null hypersurface condition,gi j ∂i F∂ j F = 0, andF(v, r ) = 0,
namelyr = r (v). It follows thatrH depends on timev. So the location of the event
horizon and the shape of the black hole change with time.

4. HAWKING TEMPERATURE

In the preceding section, we have deduced the event horizon equation from
the limiting form of the separated radial part of the first order Dirac equation.
Using a similar procedure to its second order equation, we can derive the Hawking
temperature and the thermal radiation spectrum. A direct calculation gives the
second order radial equation

2r 2

(
G
∂2

∂r 2
+ ∂2

∂v∂r

)
R1+

[
(r 2G),r + 2iq Qr + 2r 2G

iµ0λ− µ2
0r

λ2+ µ2
0r

2

]
∂

∂r
R1

− (λ2+ µ2
0r

2
)
R1 = 0, (17)
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2r 2

(
G
∂2

∂r 2
+ ∂2

∂v∂r

)
R2+ [3(r 2G),r + 2iq Qr ]

∂

∂r
R2+ 4r

∂

∂v
R2

− iµ0λ+ µ2
0r

λ2+ µ2
0r

2

[
2r 2G

∂

∂r
+ 2r 2 ∂

∂v
+ (r 2G),r + 2iq Qr

]
R2

+ [(r 2G),rr + 2iq Q− (λ2+ µ2
0r

2
)]

R2 = 0. (18)

Given the transformation (14), Eqs. (17) and (18) have the following limiting
forms near the event horizonr = rH[

A

2κ
+ 4G(rH)− 2rH,v

]
∂2

∂r 2∗
R1+ 2

∂2

∂r∗ ∂v∗
R1

+
[
−A+ G,r (rH)+ 2iq Q+ 2G(rH)

rH
+ 2r 2

HG(rH)
iµ0λ− µ2

0rH

r 2
H

(
λ2+ µ2

0r
2
H

)] ∂

∂r∗
R1

=
[

A

2κ
+ 2G(rH)

]
∂2

∂r 2∗
R1+ 2

∂2

∂r∗ ∂v∗
R1 = 0, (19)

[
A

2κ
+ 4G(rH)− 2rH,v

]
∂2

∂r 2∗
R2+ 2

∂2

∂r∗ ∂v∗
R2

+
{
−A+ 3G,r (rH)+ 2iq Q+ 6G(rH)− 4rH,v

rH

− iµ0λ+ µ2
0rH

r 2
H

(
λ2+ µ2

0r
2
H

) [2G(rH)− 2rH,v]

}
∂

∂r∗
R2

=
[

A

2κ
+ 2G(rH)

]
∂2

∂r 2∗
R2+ 2

∂2

∂r∗ ∂v∗
R2

+
[
−A+ 3G,r (rH)+ 2iq Q+ 2G(rH)

rH

]
∂

∂r∗
R2 = 0. (20)

where we have used relations 2G(rH) = 2rH,v and ∂
∂r∗

R1 = 0.
With the aid of the event horizon equation (16), namely, 2G(rH) = 2rH,v, we

know that the coefficientA is an infinite limit of 0/0 type. By use of the L’ Hˆospital
rule, we get the following result

A = lim
r→rH(v0)

2(G− rH,v)

r − rH
= 2G,r (rH). (21)

Now let us select the adjustable parameterκ in Eqs. (19) and (20) such that

A

2κ
+ 2G(rH) = G,r (rH)

κ
+ 2rH,v ≡ 1, (22)
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which means the temperature of the horizon is

κ = G,r (rH)

1− 2G(rH)
= G, r (rH)

1− 2rH,v
. (23)

Such a parameter adjustment can make Eqs. (19) and (20) reduce to

∂2

∂r 2∗
R1+ 2

∂2

∂r∗∂v∗
R1 = 0, (24)

and

∂2

∂r 2∗
R2+ 2

∂2

∂r∗∂v∗
R2+

[
G,

r
(rH)+ 2iq Q+ 2G(rH)

rH

]
∂

∂r∗
R2

= ∂2

∂r 2∗
R2+ 2

∂2

∂r∗∂v∗
R2+ 2 (C + iω0)

∂

∂r ∗R2 = 0. (25)

whereω0, C will be regarded as finite real constants,

ω0 = q Q

rH
, 2C = G,r (rH)+ 2rH,v

rH
.

Equations (24) and (25) are standard wave equations near the horizon.

5. THERMAL RADIATION SPECTRUM

Combining Eq. (24) with ∂
∂r∗

R1 = 0, we know thatR1 is a constant near the
horizon. The solutionR1 = R10e−iωv∗ means that Hawking radiation does not exist
for R1.

Now separating variables to Eq. (25) as

R2 = R2(r∗)e−iωv∗

and substituting this into Eq. (25), one gets

R′′2 = 2[i (ω − ω0)− C]R′2, (26)

The solution is

R2 = R21e
2[i (ω−ω0)−C]r∗ + R20. (27)

The ingoing wave and the outgoing wave to Eq. (25) are

Rin
2 = e−iωv∗ ,

Rout
2 = e−iωv∗e2[i (ω−ω0)−C]r∗ , (r > r H). (28)

Near the event horizon, we have

r∗ ∼ 1

2κ
ln(r − rH).
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Clearly, the outgoing waveRout
2 (r > r H) is not analytic at the event horizonr = rH,

but can be analytically extended from the outside of the hole into the inside of the
hole through the lower complexr plane

(r − rH)→ (rH − r ) e−iπ

to

R̃out
2 = e−iωv∗e2[i (ω−ω0)−C]r∗eiπC/κeπ (ω−ω0)/κ , (r < r H). (29)

So the relative scattering probability of the outgoing wave at the horizon is
easily obtained ∣∣∣∣Rout

2

R̃out
2

∣∣∣∣2 = e−2π (ω−ω0)/κ . (30)

According to the method suggested by Damour and Ruffini (1976) and de-
veloped by Sannan (1988), the thermal radiation Fermionic spectrum of Dirac
particles from the event horizon of the hole is given by

〈Nω〉 = 1

e(ω−ω0)/TH + 1
, (31)

with the Hawking temperature being

TH = κ

2π
,

whose obvious expression is

TH = 1

4πrH
· MrH − Q2−3r 4

H/3

MrH − Q2/2−3r 4
H/6

. (32)

It follows that the temperature depends on the time, because it is determined by the
surface gravityκ, a function ofv. The temperature is consistent with that derived
from the investigation of the thermal radition of Klein–Gordon particles (Li, 1998;
Li et al., 1999; Li and Zhao, 1998).

6. CONCLUSIONS

Equations (16) and (23) give the location and the temperature of event horizon,
which depend on the advanced timev. They are just the same as that obtained in the
discussion on thermal radition of Klein–Gordon particles in the same space–time.
Equation (31) shows the thermal radiation spectrum of Dirac particles in a charged
Vaidya black hole with a cosmological constant3.

In conclusion, we have studied the Hawking radiation of Dirac particles in
a black hole whose mass and electric charge change with time. Our results are



P1: VENDOR/GCZ P2: GCQ/GDP/FJQ Tally: GCO/FOM/FJQ QC: FTK

International Journal of Theoretical Physics [ijtp] PP131-301585 May 18, 2001 15:47 Style file version Nov. 19th, 1999

Hawking Radiation of Dirac Particles in a Charged Vaidya–de Sitter Black Hole 1357

consistent with others. In this paper, we have dealt with the asymptotic behavior
of the separated Dirac equation near the event horizon—not only its first order
form but also its second order form. We find that the limiting form of its first
order form puts very strong restrictions on the Hawking radiation, that is, not all
components of Dirac spinors butP2, Q1 display the property of thermal radiation.
The asymmetry of Hawking radiation with respect to the four-component Dirac
spinors probably originate from the asymmetry of space–times in the advanced
Eddington–Finkelstein coordinate. This point has not been revealed previously.

In addition, our analysis demonstrates that except the Coulomb energyω0,
there was no new quantum effect in a Vaidya-type space–time as declared by Li
(Li, 1998; Li et al., 1999; Li and Zhao, 1998). This conclusion holds true in any
spherically symmetric black hole whether it is static or nonstatic.
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